exile.h

exile.h is a header-only library, enabling processes to easily isolate themselves on Linux for exploit mitigation. exile.h wants to make existing technologies, such as Seccomp and Linux Namespaces, easier to use. Those generally require knowledge of details and are not trivial for developers to employ, which prevents a more widespread adoption.

The following section gives small quick examples. Then the motivation is explained in more detail. Proper API documentation will be maintained in other files.

Quick demo

TODO This section will demonstrate the simplicity of the API, but only serves as an overview.

Filesystem isolation

System call policies / vows

Isolation of single functions

exile_launch() demo

Status

No release yet, experimental, API is unstable, builds will break on updates of this library.

Currently, it's mainly evolving from the needs of my other projects.

Motivation and Background

exile.h unlocks existing Linux mechanisms to facilite isolation of processes from resources. Limiting the scope of what programs can do helps defending the rest of the system when a process gets under attacker's control (when classic mitigations such as ASLR etc. failed). To this end, OpenBSD has the pledge() and unveil() functions available. Those functions are helpful mitigation mechanisms, but such accessible ways are unfortunately not readily available on Linux. This is where exile.h steps in.

Seccomp allows to restrict system calls available to a process and thus decrease the systems attack surface, but it generally is not easy to use. Requiring BPF filter instructions, you generally just can't make use of it right away. exile.h provides an API inspired by pledge(), building on top of seccomp. It also provides an interface to manually restrict the system calls that can be issued.

Traditional methods employed to restrict file system access, like different uids/gids, chroot, bind-mounts, namespaces etc. may require administrator intervention, are perhaps only suitable for daemons and not desktop applications, or are generally rather involved. As a positive example, Landlock since 5.13 is a vast improvement to limit file system access of processes. It also greatly simplifies exile.h' implementation of fs isolation.

Abstracting those details may help developers bring sandboxing into their applications.

Example: Archive extraction

A programming uncompressing archives does not need network access, but should a bug allow code execution, obviously the payload may also access the network. Once the target path is known, it doesn't need access to the whole file system, only write-permissions to the target directory and read on the archive file(s).

TODO example with exile.h applied on "tar" or "unzip". Link to repo.

Example: Web apps

Those generally don't need access to the whole filesystem hierarchy, nor do they necessarily require the ability to execute other processes.

Way more examples can be given, but we can put it in simple words: A general purpose OS allow a process to do more things than it actually needs to do.

Features

  • Restricting file system access (using Landlock or Namespaces/chroot as fallback)
  • Systemcall filtering (using seccomp-bpf). An interface inspired by OpenBSD's pledge() is available, removing the need to specifc rules for syscalls.
  • Dropping privileges in general, such as capabilities
  • Isolating the application from the network, etc. through Namespaces
  • Helpers to isolate single functions

What it's not

A way for end users/administrators to restrict processes. In the future, a wrapper binary may be available to achieve this, but it generally aims for developers to bring sandboxing/isolation into their software, like web browsers do. This allows a more fine-grained approach, as the developers is more familiar with the software. Applying restrictions with solutions like AppArmor requires them to be present on the system and it's easy to break things this way.

Therefore, software should ideally be written with sandboxing in mind from the beginning.

Documentation

Will be available once the interface stabilizes.

It's recommended to start with [README.usage.md] to get a feeling for exile.h. API-Documentation: [README.api.md]

Limitations

TODO:

  • seccomp must be kept up to date syscalls kernel
  • ioctl does not know the fd, so checking values is kind of strange
  • redundancies: some things are handled by capabilties, other by seccomp or both
  • seccomp no deep argument inspection
  • landlock: stat() does not apply
  • no magic, be reasonable, devs should not get sloppy, restrict IPC.

Requirements

Kernel >=3.17

While mostly transparent to users of this API, kernel >= 5.13 is required to take advantage of Landlock and furthermore it depends on distro-provided kernels being reasonable and enabling it by default. In practise, this means that Landlock probably won't be used for now, and exile.h will use a combination of namespaces, bind mounts and chroot as fallbacks.

FAQ

Does the process need to be priviliged to utilize the library?

No.

It doesn't work on Debian!

You can thank a Debian-specific kernel patch for that. In the future, the library may check against that. Execute echo 1 > /proc/sys/kernel/unprivileged_userns_clone to disable that patch for now.

Examples

Outdated:

Contributing

Contributions are very welcome. Options:

  1. Pull-Request on github
  2. Mail to exile at quitesimple.org with instructions on where to pull the changes from.
  3. Mailing a classic patch/diff to the same address.

License

ISC

Description
Painless Linux sandboxing API
Readme 355 KiB
Languages
C 89.8%
C++ 7.9%
Shell 1.8%
Makefile 0.5%